
Fall 2018 Math 566:22 1/3

Integer Programming - Solution Methods - Branch and Bound

Source: http://co-at-work.zib.de/files/Gurobi_MIP.pdf

Problem:

(IP )

{
maximize cTx

subject to Ax ≤ b,

where c ∈ Zn,b ∈ Zm, A ∈ Zm×n, and x ∈ Zn.

Suppose we try to relax the problem and solve it as a linear programming problem. The set of feasible solutions
is P . Suppose that the optimum is x? = (4.6, 3.3). We know x2 cannot be 3.3. So we create two new instances,
where we add constraints x2 ≥ d3.3e and x2 ≤ b3.3c. Variable x2 is a branch variable. We solve both instances
and better of the solutions is the solution to the original problem.

x1

x2

P

cTx

x? = (4.6, 3.3)

x1

x2

P

cTx

x? = (4.6, 3.3)

x1

x2

P

cTx

x? = (4.6, 3.3)

x1

x2

P

cTx

x? = (4.6, 3.3)

x1

x2

P

cTx

x? = (4.6, 3.3)

x1

x2

P

cTx

x? = (4.6, 3.3)

⇒

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

x1

x2

P1

P2
x2 ≥ d3.3e

x2 ≤ b3.3c

The same process repeats with P1 and P2. Result is a big branch and bound tree T .

P , (4.6, 3.3)

P2P1

x2 ≥ d3.3ex2 ≤ b3.3c

Branch and (no Bound) outline

1. Let P = {x : Ax ≤ b}

2. Build tree T with one node P (and mark it unexplored)

3. while T has unexplored node X

4. x? := optimum for LP relaxation of X; mark X explored

5. If x?
i 6∈ Z for some i

6. X1 := X ∩ {x : xi ≤ bx?
i c}

7. X2 := X ∩ {x : xi ≥ dx?
i e}

8. Add X1 and X2 to T as unexplored nodes

9. Return maximum of integer solutions in T .

cbna by Bernard Lidický

http://co-at-work.zib.de/files/Gurobi_MIP.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/


Fall 2018 Math 566:22 2/3

1: Consider problem

(IP )

{
maximize 100x2 + x1

subject to (x1, x2) ∈ P,

where P is depicted below. Solve (IP ) using Brand and Bound. Create branch and bound tree T .

0,0 x1

x2

P

0,0 x1

x2

P

0,0 x1

x2

P

0,0 x1

x2

P

0,0 x1

x2

P

0,0 x1

x2

P

Solution: Here is the sequence of cuttings.

P

0,0 x1

x2 cTx
x1 ≤ 2

x1 ≥ 3

P1

P2

0,0 x1

x2 x1 ≤ 2

x1 ≥ 3

x2 ≤ 2

x2 ≥ 3

P1,1

P1,2 = ∅
x2 ≤ 3

x2 ≥ 4

P2,1

P2,2 = ∅

0,0
x1

x2 x1 ≤ 2

x1 ≥ 3

x2 ≤ 2

P1,1

x2 ≤ 3

P2,1

x1 ≤ 4

x1 ≥ 5

P2,1,1 P2,1,2 = ∅

0,0
x1

x2

P

x1 ≤ 2

x1 ≥ 3

x2 ≤ 2

P1,1

x2 ≤ 3

x1 ≤ 4

P2,1,1

And this is the resulting tree T .

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/


Fall 2018 Math 566:22 3/3

P

(3.7, 4)

P1

(2, 2.9)

P1,1

(2, 2)

x2 ≤ 2

P1,2

∅

x2 ≥ 3

x1 ≤ 2

P2

(3, 3.8)

P2,1

(4.5, 3)

P2,1,1

(4, 3)

x1 ≤ 4

P2,1,2

∅

x1 ≥ 5

x2 ≤ 3

P2,2

∅

x2 ≥ 4

x1 ≥ 3

Notice that the leaves have either integer solution or are empty. Also notice that there
is more than just one branching on x1. And the optimum solution is (4, 3), value 304.

2: Will branch and bound ALWAYS find an optimal solution if one exists?

Solution: Yes, this EVENTUALLY gets the right answer.

3: Is there a good bound on the size of the tree?

Solution: No - the tree may explode. It may have exponential size.

4: Is it possible to identify nodes in T that will not contain the optimal solution?

Solution: Sometimes. See the example above. Consider we computed node P2,1,1 and
get an integer solution of value 304. This tells us that the optimum integral solution
has value at least 304. Now we look at node P1 - it gives solution with value 292. In
the whole subtree under P1, all integer solutions in the subtree rooted at P1 will have
value at most 292. Hence no need to solve under P1. That is why the method is
branch and bound Note: good idea to try to round and get some integers solutions
- helps cut the tree. This is the bound part of the name.

5: What are (dis)advantages of processing nodes deep in the search tree vs nodes close to the root?

Solution: Deep is more likely to give integer solution. But more likely to be eliminated
later by some better solution. No clear winner.

6: Which if a solution in a node has more non-integer coordinates, which variable to branch on first?

Solution: Depends on problem - branch on important first. Example - decide if
building factory at all before deciding how many production lines it should have.

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/

